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Coherent States with Complex Functions

K. Thirulogasanthar1 and G. Honnouvo2,3

The canonical coherent states are infinite series in powers of a complex number z. We
present classes of coherent states by replacing this complex number z by other choices,
namely, iterates of a complex function, higher functions, and elementary functions.
Further, we show that some of these classes do not furnish generalized oscillator algebras
in the natural way. A reproducing kernel Hilbert space is discussed to each class of
coherent states.
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1. INTRODUCTION

Hilbert spaces are the natural framework of mathematical aside of many
branches of applications, for instance, quantum theories, signal, and image anal-
ysis. As far as physical applications are concerned, the most fundamental for the
analysis, or decomposition, of states in the Hilbert space of the problem is an
overcomplete family of vectors known as coherent states (CS). In the terminology
of signal processing, the Hilbert space consists of finite energy signals (square
integrable functions), here again one intends to decompose a signal and select a
suitable set of components in such a way that, in the reconstruction process one
recovers the signal without loosing essential information of the signal. In order to
accomplish this task practitioners prefer to have an overcomplete family of vectors
in the Hilbert space (for practical reasons an orthonormal basis is not a suitable
one (Daubechies Ingrid, 1986). This family is generally known as a frame. A most
suitable family, in practice, is known as wavelets. In fact, wavelets are CS, namely,
those associated to the affine group of appropriate dimension. Further, CS are a
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specific type of tight frames, for a detail description see Ali, Antoine, and Gazeau
(2000).

There are a number of ways to define a set of CS, for example, see Ali,
Antoine, and Gazeau (2000), Klauder and Skagerstam (1985), and Pérélemov
(1986) for different approaches. In this article, we define a generalized version of
the canonical CS (infinite series version). In fact, this type of CS were discussed in
the literature in a somewhat different context, see Theorem 5.4.2 of Ali, Antoine,
and Gazeau (2000).

Definition 1.1. Let H be a separable Hilbert space with an orthonormal basis
{φm}∞m=0 and C be the complex plane. Let D be an open subset of C and define

�m : D → D, m = 0, 1, 2, . . .

a sequence of complex functions. Then the vectors

|�(z)〉 = N (|z|)− 1
2

∞∑
m=0

�m(z)√
ρ(m)

φm ∈ H; z ∈ D (1.1)

are said to form a set of CS if

(a) For each z ∈ D, the states |�(z)〉 are normalized, that is, 〈�(z)|�(z)〉 = 1.
(b) The states {|�(z)〉 : z ∈ D} satisfy a resolution of the identify, that is∫

D
|�(z)〉〈�(z)| dµ = I (1.2)

where N (|z|) is the normalization factor, {ρ(m)}∞m=0 is a sequence of nonzero
positive real numbers, dµ is an appropriately chosen measure, and I is the identity
operator on H.

Definition 1.1 is a generalization of the well-known classes of CS,

|z〉 = N (|z|)− 1
2

∞∑
m=0

zm

√
ρ(m)

φm (1.3)

where z ∈ D, an open subset of C and ρ(m) is as in Definition 1.1. For ρ(m) = m!
we get N (|z|) = e|z|2 , this choice is the basic harmonic oscillator canonical CS.

For �m(z) = zm the states 1.1, for various ρ(m), were studied extensively
and applied successfully in quantum theories for almost half a century. Interesting
links were established with group representations, classical polynomials, etc. (Ali,
Antoine, and Gazeau, 2000; Klauder and Skagerstam, 1985; Klauder, Penson, and
Sixdeniers, 2001; Borzov, 2001; Borzov et al., 1997; Pérélemov, 1986). Recently,
another class of CS were introduced, by Gazeau and Klauder, for Hamiltonians
with discrete and continuous spectrum by taking �m(J, α) = (

√
J )meiemα and

ρ(m) = e1e2, . . . , em , where em’s are the spectrum of the Hamiltonian arranged
in a particular way, for details see Gazeau and Klauder (1999). Following their
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work the same class of CS were studied for various Hamiltonians, for example see
(Antoine et al., 2001).

Due to the wide range of applications of CS in quantum theories, it is an active
area of research to find new classes of CS in various domains. In the literature,
a huge volume of articles were devoted to this task. Main attention was paid to
the construction of CS by changing ρ(m) in (1.3), for example see Klauder and
Skagerstam (1985) and Klauder, Penson, and Sixdeniers (2001). However, in a
recent article, (Thirulogasanther and Ali, 2003) CS agreeing with Definition 1.1
were presented by taking �m(Z ) = Zm , where Z is a n × n matrix-valued function.
It was also argued that these CS (in fact vector coherent states) are constructive in
studying multilevel spin atoms in electromagnetic fields.

In this article, we present new classes of CS by replacing the function �m(z)
of Definition 1.1 by the mth iterate of a complex function, Laguerre polynomial,
and Bessel function of the first kind. As the last part of this paper, we discuss
classes of CS obtained by replacing �m(z) by some elementary functions.

For the states (1.3) a naturally associated Lie algebra structure can be defined,
see Section 4. However, we show that for the states (1.1) it is not always possible to
define such algebra. But the cases where �m(z) = F(z)m , the mth power of some
function, we can define such an algebra. We discuss such examples in Section 5.

Mathematically, our construction allows, through the resolution of the iden-
tity, one to decompose any vector of any separable Hilbert space in terms of �m(z),
which is a special function, iterate of a function or elementary function (when one
changes the Hilbert space, the basis elements φm changes accordingly). Further, as
a consequence of the resolution of the identity, we will also associate a reproducing
kernel and an isometric embedding between certain Hilbert spaces.

2. CS LABELED BY THE ITERATES OF A COMPLEX FUNCTION

In this section, we introduce a class of CS by taking �m(z) as the mth iterate
of a complex function T . We first discuss a general scheme to build CS together
with a discussion of the construction of a reproducing kernel Hilbert space and
then present an example.

Let T : C → C be a complex function. Let T m(z) = T ◦ T ◦ T ◦ · · · ◦ T (z)
denote the mth iteration and T 0z = z.

Theorem 2.1. Let {φm}∞m=0 be an orthonomal basis of an abstract separable
Hilbert space H. Suppose the function T has the following properties for some
positive sequence {ρ(m)}∞m=0.

N (|z|) =
∞∑

m=0

|T m(z)|2
ρ(m)

< ∞ for each z ∈ C (2.1)
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∫
C

1

N (|z|) T m(z)T n(z) dµ(z) =
{

0 if m �= n
ρ(m) if m = n

(2.2)

where dµ is an appropriately chosen measure. Then the vectors

|T (z)〉 = N (|z|)− 1
2

∞∑
m=0

T m(z)√
ρ(m)

φm ∈ H; z ∈ C (2.3)

form a set of CS.

Proof: We require

〈T (z)|T (z)〉 = 1

This requirement can be obtained as follows:

〈T (z)|T (z)〉 = N (|z|)−1
∞∑

m=0

∞∑
l=0

T m(z)T l(z)√
ρ(m)ρ(l)

〈φm |φl〉

= N (|z|)−1
∞∑

m=0

|T m(z)|2
ρ(m)

= 1

where we have used (2.1). Thus, the states |T (z)〉 are normalized. For a resolution
of the identity, consider∫

C

|T (z)〉〈T (z)| dµ(z) =
∞∑

m=0

∞∑
l=0

1√
ρ(m)ρ(l)

∫
C

N (|z|)−1T m(z)T l(z)

×|φm〉〈φl | dµ(z)

=
∞∑

m=0

1

ρ(m)

∫
C

N (|z|)−1T m(z)T m(z) dµ(z)|φm〉〈φm |

=
∞∑

m=0

|φm〉〈φm | = I

where we have used (2.2).We have obtained a resolution of the identity∫
c
|T (z)〉〈T (z)| dµ(z) = I (2.4)

Thus, the collection of vectors, (2.3) forms a set of CS. �

Let Ĥ = L2(C, dµ) be the Hilbert space of all complex valued functions on
C that are square integrable with respect to the measure µ. From the resolution of
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the identity (2.4), for any φ ∈ H, we have

φ =
∫

C

〈T (z)|φ〉|T (z)〉 dµ

that is,

� : C → C with �(z) = 〈T (z)|φ〉; φ ∈ H (2.5)

defines elements in Ĥ. Further

W : H −→ Ĥ with φ �−→ Wφ = � (2.6)

is a norm-preserving linear map (an isometry), because from (2.4) we have

‖Wφ‖2 = ‖�‖2 =
∫

C

|�(z)|2 dµ(z) = ||φ||2

The range of this isometry, WH = HK ⊂ Ĥ is a closed subspace of Ĥ. Let

KT (z, z′) = 〈T (z)|T (z′)〉 = 1√
N (|z|)N (|z′|)

∞∑
m=0

T m(z)T m(z′)
ρ(m)

(2.7)

which satisfies

�(z) =
∫

C

KT (z, z′)�(z′) dµ(z′) (2.8)

a reproducing property satisfied by any vector � ∈ HK with the reproducing kernel
KT (z, z′). The function KT satisfies

KT (z, z′) = KT (z′, z) (2.9)

KT (z, z) > 0 (2.10)∫
C

KT (z, z′′)KT (z′′, z′) dµ(z′′) = KT (z, z′) (2.11)

The property (2.11) is called the square integrability property of KT . Using (2.6),
we can write

(W|T (z′)〉) (z) = 〈T (z)|T (z′)〉 = KT (z, z′)

Thus for a fixed z′ the function z �−→ KT (z, z′) is the image in HK of |T (z′)〉
under the isometry W . Since {|T (z)〉 : z ∈ C} is overcomplete in H and W is an
isometry, the set of vectors {W|T (z)〉 : z ∈ C} is overcomplete in HK , that is,

{ηz = KT (· , z) : z ∈ C}
is overcomplete in HK . Observe that ηz are the same CS as |T (z)〉 but now written
as vectors in the Hilbert space of functions HK . From the above argument it is
clear that HK is a reproducing kernel Hilbert space of the reproducing kernel KT .
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These results are the analogue of the harmonic oscillator canonical CS. For a detail
discussion regarding the reproducing kernels and CS, Ali, Antoine, and Gazeau
(2000) is an excellent reference.

Example 2.1. Let T : C −→ C by T (z) = zk , where k �= 1 is a fixed positive
integer. Then with z = reiθ

T m(z) = zkm = rkm
eikmθ and T m(z) = z̄km = rkm

e−ikmθ

Let ρ(m) = �(km + 1). Since T m(z)T m(z) = r2km
, { r2km

�(km+1) }∞m=0 is a subsequence

of the positive sequence { r2m

�(m+1) }∞m=0 and the sequence { r2m

�(m+1) }∞m=0 is summable,
we have

N (|z|) =
∞∑

m=0

r2km

�(km + 1)
< ∞

Further, let dµ(r, θ ) = N (|z|)
π

e−r2
rdrdθ then∫

C

1

N (|z|) T m(z)T l(z) dµ = 1

π

∫ ∞

0

∫ 2π

0
rkm

eikmθrkl
e−iklθ e−r2

r dr dθ

=
{

0 if m �= l
�(km + 1) if m = l

where we have used the identity

�(z) =
∫ ∞

0
e−t t z−1 dt when Re z > 0

and the fact ∫ 2π

0
ei(km−kl )θ dθ =

{
0 if m �= l

2π if m = l

Thus with T (z) = zk the collection of vectors

|T (z)〉 = N (|z|)− 1
2

∞∑
m=0

T m(z)√
�(km + 1)

φm ; z ∈ C (2.12)

forms a set of CS. Here N (|z|) does not wear a closed form. In this case, the
reproducing kernel (2.7) takes the form

KT (z, z′) = 1√
N (|z|)N (|z′|)

∞∑
m=0

(z̄z′)km

�(km + 1)

Since

〈φ|T (z)〉 = N (|z|)− 1
2

∞∑
m=0

〈φ|φm〉√
�(km + 1)

zkm = N (|z|)− 1
2 f (z)
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where f is an analytic function of the complex variable z, the image of the isometry
W is a space of analytic functions in z that are square integrable with respect to
the measure dµ(r, θ ).

It is an analogous result of the canonical CS. However, the states (2.12) cannot
be transformed to the form of (1.3). Further, for the states (1.3) there is always an
associated Lie algebra but to the states (2.12) we cannot define such algebra in the
way that has been used to define algebra for the states (1.3), see Section 4.

3. CS WITH HIGHER FUNCTIONS

In this section, we discuss two classes of CS by taking �m as an associated
Laguerre function and the Bessel function of the first kind. That is

�m(r, θ ) = [
Lα

m(r )
] 1

2 eimθ , �m(r, θ ) =
[
rm Jm+ 1

2
(r )

] 1
2

eimθ

We also discuss a reproducing kernel Hilbert space to each class. The inserted
term eimθ in the Laguerre case plays an important role in getting a resolution of
the identity. In the case of the Bessel function, the term r

m
2 eimθ plays important

roles in both, the normalization and resolution of the identity.

3.1. CS with Laguerre Polynomials

The Laguerre polynomials are given by

Lα
m(x) = ex x−α

m!

dm

dxm
(e−x xm+α) (3.1)

Proposition 3.1. For r ∈ [0, ∞] and θ ∈ [0, 2π ), the vectors

|r, θ〉 = [err−α�(α, r )]−
1
2

∞∑
m=0

eimθ
[
Lα

m(r )
] 1

2

√
m + 1

φm (3.2)

form a set of CS.

Proof: From Lebedev (1965, p. 91, formula 4.24.5) we have

∞∑
m=0

Lα
m(r )

m + 1
= err−α�(α, r ) (3.3)

where 0 < r < ∞ and α > −1. Thus we have

〈r, θ |r, θ〉 = [err−α�(α, r )]−1
∞∑

m=0

Lα
m(r )

m + 1
= 1
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On D = [0, ∞) × [0, 2π ), let us take the measure,

dµ(r, θ ) = N (r )

2π
λ(r ) dr dθ

where

λ(r ) = rβ−1e−r

�(β)

is an auxiliary density and β is a positive constant such that α − β = 1. For a
resolution of the identity, consider∫ ∞

0

∫ 2π

0
|r, θ〉〈r, θ | dµ (r, θ )

=
∞∑

m=0

1

(m + 1)�(β)

∫ ∞

0
rβ−1e−r Lα

m(r ) dr | φm〉〈φm |

Thus the resolution of the identity demands,∫ ∞

0
rβ−1e−r Lα

m(r ) dr = (m + 1)�(β) (3.4)

Now we use the following transform from Erdélyi et al. (1953), Vol. 2, p. 292 (1)∫ ∞

0
xβ−1e−x Lα

m(x) dx = �(α − β + m + 1)�(β)

m!�(α − β + 1)
(3.5)

where β > 0. Since α − β = 1 from (3.4) and (3.5) we get a resolution of the
identity. �

Using the definition of the associated Laguerre function (3.1) one can rewrite
the CS as follows:

|r, θ〉 = �(α, r )−
1
2

∞∑
m=0

eimθ
[
F (m)

α (r )
] 1

2

√
(m + 1)!

φm (3.6)

where Fα(r ) = e−r rm+α and F (m)
α (r ) is the mth derivative of it. In this case, the

associated reproducing kernel takes the form

KF (r, θ , r ′, θ ′) = [�(α, r )�(α, r ′)]−
1
2

∞∑
m=0

√
F (m)

α (r )F (m)
α (r ′)

(m + 1)!
eim(θ ′−θ )

and the square integrability condition reads∫ ∞

0

∫ 2π

0
KF (r, θ , r ′′, θ ′′)KF (r ′′, θ ′′, r ′, θ ′) dµ(r ′′, θ ′′) = KF (r, θ , r ′, θ ′)
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The image of the isometry W becomes

(Wφ)(r, θ ) = �(α, r )−
1
2

∞∑
m=0

〈φ|φm〉√
(m + 1)!

eimθ
[
F (m)

α (r )
] 1

2 = �(α, r )−
1
2 f (r, θ )

Now, in accordance with (3.2) let us see the normalization factor and the measure
for some special values of α and β.

(i) For α = 2 and β = 1,

N (r ) = 1 + r

r2
and λ(r ) = e−r ; r > 0

N (r ) is singular ar r = 0.

(ii) For α = 3 and β = 2,

N (r ) = r2 + 2r + 2

r3
and λ(r ) = re−r ; r > 0.

N (r ) is singular at r = 0.
(iii) For α = 4 and β = 3,

N (r ) = r3 + 3r2 + 6r + 6

r4
and λ(r ) = r2e−r

2
; r > 0.

N (r ) is singular at r = 0.

3.2. CS with Bessel Function

Here, we discuss a set of CS with Bessel functions of the first kind, which is
defined as

Jv (z) =
∞∑

m=0

(−1)m( z
2 )v+2m

m!�(v + m + 1)
(3.7)

Proposition 3.2. For r ∈ [0, ∞) and θ ∈ [0, 2π ) the set of vectors

|r, θ〉 = [
I 1

2
(r )

]− 1
2

∞∑
m=0

[
rm Jm+ 1

2
(r )

m!

] 1
2

eimθφm (3.8)

where Iv (r ) is the order v modified Bessel function of the second kind, from a set
of CS.
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Proof: We have

〈r, θ |r, θ〉 = [
I 1

2
(r )

]−1
∞∑

m=0

rm Jm+ 1
2
(r )

m!
= 1

where we have used the identify (see Andrews, 1992, p. 296)
∞∑

m=0

xm

�(m + 1)
Jn+m(x) = In(x)

with n = 1
2 . Since I 1

2
(r ), is a sharply increasing positive function, the measure, on

D = [0, ∞) × [0, 2π ),

dµ(r, θ ) =
√

r

2π
e−r I 1

2
(r ) dr dθ

is positive. With this measure let us see a resolution of the identity:∫ ∞

0

∫ 2π

0
|r, θ〉〈r, θ | dµ(r, θ )

=
∞∑

m=0

∞∑
l=0

|φm〉〈φl |√
m!l!

∫ ∞

0

∫ 2π

0

ei(m−l)θ

N (r )

√
rm+l Jm+ 1

2
(r )Jl+ 1

2
(r )

×
√

r

2π
e−r I 1

2
(r ) dr dθ

=
∞∑

m=0

√
2π

m!

∫ ∞

0
rm+ 1

2 Jm+ 1
2
(r )e−r dr |φm〉〈φm |

=
∞∑

m=0

|φm〉〈φm | = I

where we have used the identity (see Andrews,1992, p. 260, formula 6.55)∫ ∞

0
e−ax x p Jp(bx) dx = (2b)p�(p + 1

2 )
√

π (a2 + b2)p+ 1
2

; p > −1

2
, a, b > 0

with b = 1, a = 1, and p = m + 1

2
. Thus the state in (3.8) from a set of CS.

Here, again the image of the isometry and a reproducing kernel can be obtained
as in the case of Laguerre polynomials. �

4. THE OSCILLATOR ALGEBRA

For the state in (1.3), there is a natural way of defining the annihilation,
creation and number operators. These three operators are denoted, respectively,
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by a, a†, and N . Let xm = ρ(m)

ρ(m − 1)
and x0! = 1 then ρm = xm!, the generalized

factorial. For the basis vectors {φm}∞m=0, these operators are defined as

aφm = √
xmφm−1, a†φm = √

xm+1φm+1; and Nφm = xmφm (4.1)

where a† is the adjoint of a and N = a†a. For a detail explanation see Ali, Antoine,
and Gazeau (2000). Under this definition, the commutators take the form

[a, a†]φm = (xm+1 − xm)φm (4.2)

[N , a†]φm = (xm+1 − xm)φm+1 and (4.3)

[N , a]φm = (xm−1 − xm)φm−1 (4.4)

These three operators, under the commutator bracked, generate a Lie algebra Uosc

called a generalized oscillator algebra. Under this defination the states in (1.3)
become the eignstate of a, i.e.,

a|z〉 = z|z〉
Since a† is the adjoint of a and N = a†a, if we define the annihilation operator
for a set of CS we can obtain the operator a† and N . To define an annihilation
operator, in principle, for a set of CS we require

aφm = g(m)φm−1, aφ0 = 0, and a|·〉 = f (·)|·〉 (4.5)

where g(m) depends on m and f (·) does not depend on m but depends only on
the lebeling parameter of CS. In the following we will show that for the states
in (2.12), (3.2), and (3.8) an annihilation operator cannot be defined to satisfy
(4.5). However, we will build CS agreeing with (1.1) to have a Lie algebra in
the following section. For the states in (2.12), suppose there exits an annihilation
operator satisfying (4.5). Then

a|T (z)〉 = f (z)|T (z)〉 and (4.6)

aφm = g(m)φm−1 (4.7)

By(4.7) we get,

a|T (z)〉 = N (|z|)− 1
2

∞∑
m=1

zkm
g(m)√
ρ(m)

φm−1 = N (|z|)− 1
2

∞∑
m=0

zkm+1
g(m + 1)√

ρ(m + 1)
φm

Now from (4.6)we get

N (|z|)− 1
2

∞∑
m=0

zkm+1
g(m + 1)√

ρ(m + 1)
φm = N (|z|)− 1

2

∞∑
m=0

zkm
f (z)√

ρ(m)
φm
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Since {φm} is an orthonormal basis we get

zkm+1
g(m + 1)√

ρ(m + 1)
= zkm

f (z)√
ρ(m)

for all m.

Thus

f (z) = zkm+1−km
g(m + 1)

√
ρ(m)

ρ(m + 1)
(4.8)

Since f (z) is independent of m we must have

g(m + 1)

√
ρ(m)

ρ(m + 1)
= C1 and (4.9)

km+1 − km = km(k − 1) = C2 (4.10)

where C1 and C2 are constants. ρ(m) and g(m) can be chosen to satisfy (4.9) but
(4.10) can be satisfied only for k = 1. In our construction we assumed k �= 1. Thus
for the states in (2.12) an annihilation operator cannot be defined to satisfy (4.5).
For the general case (2.3), f (z) becomes

f (z) = T m+1(z)

T m(z)
g(m + 1)

√
ρ(m)

ρ(m + 1)

Thus, an annihilation operator can only be defined if

T m+1(z)

T m(z)
= h(z)

a function of z only. In general, this is not possible. For the states in (3.2), f (z)
takes the form

f (z) =
√

Lα
m+1(r )

Lα
m(r )

g(m + 1)

√
ρ(m)

ρ(m + 1)

Again, an annihilation operator can only be defined if√
Lα

m+1(r )

Lα
m(r )

= k(r )

a function independent of m, which is not the case. Therefore, for the states (3.2)
there cannot be an annihilation operator in the form (4.5). A similar argument
applies to the CS in (3.8).
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5. CS WITH ELEMENTARY FUNCTIONS

In this section, we present classes of CS by taking �m as some elementary
functions of type �m(z) = F(z)m , the mth power of a function F(z). In these cases,
as we mentioned earlier, we will also generate a Lie algebra structure associated
to CS.

5.1. On an Arbitrary Disc

Here, we discuss a set of CS with

�m(r, θ ) = eimθ (y − r )m

where y is a fixed positive real number, r ∈ (0, y) and θ ∈ [0, 2π ). Let

Dy = {z = (y − r )eiθ : r ∈ (0, y), θ ∈ [0, 2π )}
a disc of radius y. Now we define a set of CS on Dy .

Proposition 5.1. For z ∈ Dy , the set of vectors

|z〉 = N (r, y)−
1
2

∞∑
m=0

[
(ν + 1)2m

(2m)!y2m+ν

] 1
2

zmφm (5.1)

form a set of CS, where

N (r.y) = �(1 + ν)

�(ν)yν

√
π (1 − r )

y

(
1 − (1 − r )2

y2

)− ν+2
2

P
1
2

− ν+2
2

(
y2 + (1 − r )2

y2 − (1 − r )2

)
where Pl

m(x) is the associated Legendre polynomials, and

(a)m = �(a + m)

�(a)

the Pochhammer symbol.

Proof: In order to obtain the normalization and a resolution of the identity, we
use the following integral transorm: From Erdélyi et al. (1981) Vol. 2, p. 185–187
the following transform∫ y

0
xν−1(y − x)µ−1 dx = �(µ)�(ν)

�(µ + ν)
yµ+ν−1 (5.2)

is valid when µ, ν > 0, and y > 0. Since we require 〈z|z〉 = 1 and

〈z|z〉 = N (r, y)−1
∞∑

m=0

(ν + 1)2m

(2m)!y2m+ν
(y − r )2m
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the normalization factor takes the form

N (r, y) =
∞∑

m=0

(ν + 1)2m

(2m)!y2m+ν
(y − r )2m

= �(1 + ν)

�(ν)yν

√
π (1 − r )

y

(
1 − (1 − r )2

y2

)− ν+2
2

P
1
2

− ν+2
2

(
y2 + (1 − r )2

y2 − (1 − r )2

)
Since

lim
m→∞

(y − r )2m+2ρ(m)

(y − r )2mρ(m + 1)
= y2 − 2yr + r2

y2

the series converges on [0, y). For the resolution of the identity, let us take a
measure on Dy as

dκ(r, θ ) = dω(r ) dθ.

Consider∫
Dy

|z〉〈z| dκ(r, θ ) =
∫ y

0

∫ 2π

0
|r, θ〉〈r, θ | dω(r ) dθ

=
∞∑

m=0

2π
(ν + 1)2m

(2m)!y2m+ν

∫ y

0

(y − r )2m

N (r )
dω(r )|φm〉〈φm |

Let us take dω(r ) as

dω(r ) = N (r )

2π
λ(r ) dr

where λ(r ) = r ν−1 is an auxiliary density. Thus to get∫
Dy

|z〉〈z| dκ(r, θ ) = I

we must have

(ν + 1)2m

(2m)!y2m+ν

∫ y

0
r ν−1(y − r )2m dr = 1

which is true by (5.2) with µ − 1 = 2m. Thus, the set of vectors {|z〉 : z ∈ Dy}
forms a set of CS. �

Now for a reproducing kernel, let us take

K (z̄, z′) = 〈z̄|z′〉
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Through a small calculation we arrive,

K (z̄, z′) =
√

π

N (r, y)N (r ′, y)

�(ν + 1)(zz′)
1
4 y− 3

2

(y2 − zz′)
ν+2

2

P
1
2

− (ν+2)
2

(
zz′ + y2

y2 − zz′

)
and it satisfies the square integrability property∫

Dy

K (z, z′′)K (z̄′′, z′) dκ(r, θ ) = K (z̄, z′)

The isometric image takes the form

(Wφ)(z) = 〈φ|z〉 = N (r, y)−
1
2

∞∑
m=0

〈φ|φm〉
[

(ν + 1)2m

(2m)!y2m+ν

] 1
2

zm = N (r, y)−
1
2 f (z)

where f is an analytic function in the variable z on Dy . It is interesting to notice
that by changing y we can change the domain of interest as we please. Let us see
some special values. For y = 1 and ν = 1 we get

ρ(m) = 1

2m + 2
N (r ) =

√
π (1 − r )

(2r − r2)2
P

1
2

1
2

(
r2 − 2r + 2

2r − r2

)
, λ(r ) = 1

where N (r ) is positive and has a singularity at r = 0.
For y = 2 and ν = 2 we have

ρ(m) = 22m+2

(2m + 2)(2m + 3),

N (r ) = 4
√

π (2 − r )√
2r2(4 − r )2

P
1
2

1

(
r2 − 4r + 8

4r − r2

)
, λ(r ) = r

again N (r ) is positive and has a singularity at r = 0. In a similar way by changing
y and ν we can generate several classes of CS of type (5.1).

Further, an oscillator algebra can be defined, for example, for the case y = 1
and ν = 1 we have

xm = m − 1

m + 1

in (4.1). Thus by the discussion of Section 4 we have a Lie algebra, Uosc associated
to the CS but it cannot be identified with a classical Lie algebra. In these cases, we
also have

a|z〉 = z|z〉
that is, the CS is an eigenstate of the annihilation operator, a.
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5.2. Another Class of CS on the Unit Disc

Here, we discuss another class of CS on the unit disc with a different choice
of �m . These CS are in analogy with the Barut–Girardello CS in the sense that these
CS can be realized as the eigenstates of K , one of the generators of the classical
su(1,1) Lie algebra. For the details of su(1.1), for example, see Ali, Antoine, and
Gazeau (2000). Let

D = {(r, θ ) : 0 ≤ r < 1, 0 ≤ θ < 2π}
Let us consider the sequence of functions

�m(r, θ ) = eimθ [log r ]m , m = 0, 1, 2, . . .

Proposition 5.2. For (r, θ ) ∈ D and z = eiθ log r the vectors

|z〉 = [cosh(log r )]−
1
2

∞∑
m=0

zm

√
(2m)!

φm , r > 0 (5.3)

form a set of CS.

Proof: Let us first see the normalization

〈z|z〉 = [cosh(log r ]−1
∞∑

m=0

[log r ]2m

(2m)!
= 1, 0 < r < 1

Note that the normalization factor has a singularity at r = 0. On D we take the
measure,

dκ(r, θ ) = N (r )

2πr2
dθ dr

which is singular at r = 0. Now for the resolution of the identity, consider∫
D

|z〉〈z| dκ(r, θ ) =
∞∑

m=0

1

ρ(m)

∫ 1

0
[(log r )]2mr−2 dr |φm〉〈φm |

=
∞∑

m=0

|φm〉〈φm | = I

where we have used the integral transform (Erdélyi et al., 1953, Vol. 1, p. 315,
(14)) with s = −1 and ν = 2m + 1. The transform∫ 1

0
(log x)ν−1xs−1 dx = (−s)−ν�(ν)

is valid when 0 < x < 1, ν > 0, and s < 0. �
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In this case, the reproducing kernel takes the form

K (z̄, z′) = [cosh (log r ) cosh (log r ′)]−
1
2 cosh

√
zz′

and a reproducing condition similar to the previous case can be written. The iso-
metric image is

(Wφ)(r, θ ) = [cosh (log r )]−
1
2

∞∑
m=0

〈φ|φm〉√
(2m)!

zm

= [cosh (log r )]−
1
2 f (z)

where f (z) is an analytic function of z in D. Let us see the oscillator algebra Uosc

associated to this class of CS. Since

xm = �(2m + 1)

�(2m − 2)
= 2m(2m − 1)

from (4.1) we get

aφm =
√

2m(2m − 1)φm−1 = 2

√
m

(
m − 1

2

)
φm−1

a†φm =
√

2(m + 1)(2m + 1)φm+1 = 2

√
(m + 1)

(
m + 1

2

)
φm+1

Nφm = 2m(2m − 1)φm = 4m

(
m − 1

2

)
φm

Now let us define a new set of operators

Aφm = 1

2
aφm =

√
m

(
m − 1

2

)
φm−1

A
†φm = 1

2
a†φm =

√
(m + 1)

(
m + 1

2

)
φm+1

Nφm =
(

m + 1

4

)
φm

Note that in this case N �= A
†
A. By a direct calculation it can be seen that these

new operators satisfy the commutation relations,

[A, A
†] = 2N, [N, A] = −A, [N, A

†] = A
†

These are the exact commutation relations satisfied by the generators K , K+, K3

of the classical Lie algebra su(1,1) of the classical group SU (1,1). Thus, in this
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sense, we have Uosc = su(1,1). We also have

a|z〉 = z|z〉 and A|z〉 = z

2
|z〉

From this last relation, the constructed CS can also be considered as CS of Barut–
Girardello type.

6. REMARKS AND CONCLUSION

The CS presented in Section 5 can serve as a quantum tool via the associated
oscillator algebras. The States of Sections 2 and 3 do not accommodate oscillator
algebra in the usual way. As of now, to our knowledge, a physical application of
these CS is only conjectural. However, mathematically these vectors from a set of
CS and are associated to a reproducing kernel and a reproducing kernel Hilbert
space.

The CS presented in Section 2 may not easily be extended to complicated
functions. For example, if we take T (z) = z2 + c, where c is a real or complex
constant, then we do not have a closed form for T m(z), which could severely
restrict our ability to get the normalization and a resolution of the identity. The
states presented in Section 3 may be extended to other higher functions. The states
similar to the ones presented in Section 5 can easily manipulated from integral
transforms or by other means. For the CS of Section 2, if we restrict the parameter
z to be in the Julia set of T we can have frames on fractals. Some results supporting
the latter claim will be presented elsewhere.
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